Long-wave Ultraviolet Ray Promotes Inflammation in Keloid-derived Fibroblasts by Activating P38-NFκB1 Signaling Pathway

Author:

Niu Xingtang1,Lin Xunxun1,Chen Xiaoqian2,Xu Shuqia1,Huang Zhipeng1,Tang Qing1

Affiliation:

1. Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China

2. General Committee Office, Zhongshan Hospital, Fudan University, Shanghai, China

Abstract

Abstract One of the main mechanisms of keloid formation is the persistent chronic inflammation, which initiates the activation of keloid-derived fibroblasts (KFs) and boosts the production of extracellular matrix. Meanwhile, 95% of the ultraviolet rays that reach the earth are long-wave ultraviolet (UVA). However, the effect of UVA on keloids is currently unclear. The objective of our research is to investigate UVA’s impact on keloids. Cell viability assay, migration assay, and cell cycle analysis were conducted. UVA’s impacts on gene expressions were detected by real-time quantitative polymerase chain reaction, western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence. Our results indicated that UVA inhibited the proliferation and migration of KFs. In addition, after UVA irradiation, the expressions of matrix metallopeptidase 1 and matrix metallopeptidase 2 markedly increased in KFs. Moreover, the expression of α-smooth muscle actin and collagen I decreased. Furthermore, KFs with UVA irradiation secreted more interleukin-6 and interleukin-8 in the culture medium. And it was confirmed that the protein expressions of inflammation-related factors, including P38, CK2A, NFκB1, and P65, increased observably in KFs with UVA irradiation. The protein expression of IKBα, also known as NFκB inhibitor α, decreased. All these observations suggested that UVA irradiation could inhibit cellular activity and collagen production in KFs while promoting inflammation by activating P38-NFκB1 signal pathway.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3