Clinical Investigation of a Rapid Non-invasive Multispectral Imaging Device Utilizing an Artificial Intelligence Algorithm for Improved Burn Assessment

Author:

Thatcher Jeffrey E1,Yi Faliu1ORCID,Nussbaum Amy E1,DiMaio John Michael12,Dwight Jason1,Plant Kevin1,Carter Jeffrey E34,Holmes James H3

Affiliation:

1. Spectral MD, Inc. , Dallas, TX , USA

2. Baylor Scott and White, The Heart Hospital, Baylor Scott and White Research Institute , Dallas, TX , USA

3. Atrium Health Wake Forest Baptist Medical Center Burn Center , Winston-Salem, NC , USA

4. The Burn Center at University Medical Center New Orleans , LA , USA

Abstract

Abstract Currently, the incorrect judgment of burn depth remains common even among experienced surgeons. Contributing to this problem are change in burn appearance throughout the first week requiring periodic evaluation until a confident diagnosis can be made. To overcome these issues, we investigated the feasibility of an artificial intelligence algorithm trained with multispectral images of burn injuries to predict burn depth rapidly and accurately, including burns of indeterminate depth. In a feasibility study, 406 multispectral images of burns were collected within 72 hours of injury and then serially for up to 7 days. Simultaneously, the subject’s clinician indicated whether the burn was of indeterminate depth. The final depth of burned regions within images were agreed upon by a panel of burn practitioners using biopsies and 21-day healing assessments as reference standards. We compared three convolutional neural network architectures and an ensemble in their capability to automatically highlight areas of nonhealing burn regions within images. The top algorithm was the ensemble with 81% sensitivity, 100% specificity, and 97% positive predictive value (PPV). Its sensitivity and PPV were found to increase in a sigmoid shape during the first week postburn, with the inflection point at day 2.5. Additionally, when burns were labeled as indeterminate, the algorithm’s sensitivity, specificity, PPV, and negative predictive value were: 70%, 100%, 97%, and 100%. These results suggest multispectral imaging combined with artificial intelligence is feasible for detecting nonhealing burn tissue and could play an important role in aiding the earlier diagnosis of indeterminate burns.

Funder

Biomedical Advanced Research and Development Authority

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

Reference42 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3