Endothelial damage occurs early after inhalation injury as measured by increased syndecan-1 levels

Author:

Kelly Edward J12,Carney Bonnie C23,Oliver Mary A2,Keyloun John W12,Prindeze Nicholas J12,Nisar Saira2,Moffatt Lauren T23,Shupp Jeffrey W123

Affiliation:

1. The Burn Center, Department of Surgery, MedStar Washington Hospital Center , Washington, DC , USA

2. Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute , Washington, DC , USA

3. Departments of Surgery and Biochemistry, Georgetown University School of Medicine , Washington, DC , USA

Abstract

Abstract Inhalation injury is a significant cause of morbidity and mortality in the burn patient population. However, the pathogenesis of inhalation injury and its potential involvement in burn shock is not well understood. Preclinical studies have shown endothelial injury, as measured by syndecan-1 (SDC-1) levels, to be involved in the increased vascular permeability seen in shock states. Furthermore, the lung has been identified as a site of significant SDC-1 shedding. Here we aim to characterize the contribution of endotheliopathy caused by inhalation alone in a swine model. When comparing injured animals, the fold change of circulating SDC-1 levels from preinjury was significantly higher at 2, 4, and 6 hours postinjury (P = .0045, P = .0017, and P < .001, respectively). When comparing control animals, the fold change of SDC-1 from preinjury was not significant at any timepoint. When comparing injured animals versus controls, the fold change of SDC-1 injured animals was significantly greater at 2, 4, 6, and 18 hours (P = .004, P = .03, P < .001, and P = .03, respectively). Histological sections showed higher lung injury severity compared to control uninjured lungs (0.56 vs 0.38, P < .001). This novel animal model shows significant increases in SDC-1 levels that provide evidence for the connection between smoke inhalation injury and endothelial injury. Further understanding of the mechanisms underlying inhalation injury and its contribution to shock physiology may aid in development of early, more targeted therapies.

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3