Curcumin Protects Human Dermal Fibroblasts Exposed to Hydrogen Peroxide by Regulating Autophagy Level and Reactive Oxygen Species Generation

Author:

Pan Tianyun1,Zhang Shuxian1,Fei Huanhuan1,Hu Yun1ORCID

Affiliation:

1. Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University , Huzhou 313000 , China

Abstract

Abstract Curcumin is getting more and more attention in wound healing and scar prevention because of its wide range of pharmacological effects, such as anti-inflammation, antioxidant, and anti-fibrosis. The activity of fibroblasts suffering from oxidative stress is reduced, affecting wound repair. In this study, we investigated whether curcumin treatment (10 μM, 24 hours) had protective effects on human dermal fibroblasts (HDFs) exposed to hydrogen peroxide (H2O2, 300 μM, 12 hours). We found that curcumin alleviated H2O2-induced accumulation of reactive oxygen species (ROS, the fold change relative to the untreated control was 1.75 [SD ± 0.21] vs 5.23 [SD ± 0.51], P < .001) and improved the expression and activities of antioxidant enzymes superoxide dismutase 1 (66.61 U [SD ± 7.47] vs 46.39 U [SD ± 6.82]/106 cells, P < .05) and catalase (9.77 U [SD ± 1.82] vs 4.61 U [SD ± 0.94]/106 cells, P < .01), accompanied with increased cell proliferation and migration but decreased senescence. In addition, we found that curcumin reduced the inhibition of autophagy by H2O2, as manifested in the increased autophagic vacuoles (P < .05) and higher expression of autophagy-related proteins including phosphoinositide-3-kinase class III (P < .001), light chain 3 form II (P < .001), and Beclin1 (P < .01). However, intracellular redox status deteriorated again and curcumin’s protection effects were partially canceled after autophagy was inhibited by 3-methyladenine pretreatment. These data suggest that rescue of HDFs from oxidative damage by curcumin may related to the regulation of autophagy levels and ROS generation.

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3