Dermal Nanoemulsion Treatment Reduces Burn Wound Conversion and Improves Skin Healing in a Porcine Model of Thermal Burn Injury

Author:

Dolgachev Vladislav A1,Ciotti Susan23,Liechty Emma4,Levi Benjamin5,Wang Stewart C1,Baker James R6,Hemmila Mark R1

Affiliation:

1. Department of Surgery, University of Michigan Medical School, Ann Arbor, USA

2. BlueWillow Biologics, Ann Arbor, Michigan, USA

3. University of Michigan, College of Pharmacy, Ann Arbor, USA

4. Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA

5. Department of Surgery, University of Texas Southwestern Medical School, Dallas, USA

6. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA

Abstract

Abstract Burn wound progression is an inflammation-driven process where an initial partial-thickness thermal burn wound can evolve over time to a full-thickness injury. We have developed an oil-in-water nanoemulsion formulation (NB-201) containing benzalkonium chloride for use in burn wounds that is antimicrobial and potentially inhibits burn wound progression. We used a porcine burn injury model to evaluate the effect of topical nanoemulsion treatment on burn wound conversion and healing. Anesthetized swine received thermal burn wounds using a 25-cm2 surface area copper bar heated to 80°C. Three different concentrations of NB-201 (10, 20, or 40% nanoemulsion), silver sulfadiazine cream, or saline were applied to burned skin immediately after injury and on days 1, 2, 4, 7, 10, 14, and 18 postinjury. Digital images and skin biopsies were taken at each dressing change. Skin biopsy samples were stained for histological evaluation and graded. Skin tissue samples were also assayed for mediators of inflammation. Dermal treatment with NB-201 diminished thermal burn wound conversion to a full-thickness injury as determined by both histological and visual evaluation. Comparison of epithelial restoration on day 21 showed that 77.8% of the nanoemulsion-treated wounds had an epidermal injury score of 0 compared to 16.7% of the silver sulfadiazine-treated burns (P = .01). Silver sulfadiazine cream- and saline-treated wounds (controls) converted to full-thickness burns by day 4. Histological evaluation revealed reduced inflammation and evidence of skin injury in NB-201-treated sites compared to control wounds. The nanoemulsion-treated wounds often healed with complete regrowth of epithelium and no loss of hair follicles (NB-201: 4.8 ± 2.1, saline: 0 ± 0, silver sulfadiazine: 0 ± 0 hair follicles per 4-mm biopsy section, P < .05). Production of inflammatory mediators and sequestration of neutrophils were also inhibited by NB-201. Topically applied NB-201 prevented the progression of a partial-thickness burn wound to full-thickness injury and was associated with a concurrent decrease in dermal inflammation.

Funder

National Institutes of Health

Michigan Corporate Relations Network

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

Reference36 articles.

1. Prevention of infections associated with combat-related burn injuries;D’Avignon;J Trauma,2011

2. Burn wound infections;Church;Clin Microbiol Rev,2006

3. Blood vessel occlusion with erythrocyte aggregates causes burn injury progression-microvasculature dilation as a possible therapy;Clark;Exp Dermatol,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3