Affiliation:
1. The First People's Hospital of Zhengzhou , Zhengzhou, P. R. China
2. Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, P. R. China
3. Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou, P. R. China
Abstract
Abstract
This work aims to elucidate the molecular mechanism of Qi Wei anti-burn Tincture (QW) on wound healing in burnt mice using metabolomics and molecular biology techniques. A scald model was first established in Kunming mice. After treatment, biochemical indicators for liver function and burnt skin tissues were then evaluated via biochemical detection and HE staining respectively. Liver tissues were further analyzed for differential metabolites, inflammatory factors, and mRNA levels of cytokines using metabolomics and molecular biology techniques. Involved metabolic pathways were also identified using software. Qi Wei anti-burn Tincture treatment did promote the healing of the burn wounds on Kunming mice with a downregulation of ALP, ALT, AST to normal levels. In mouse liver tissue, the contents of glutamine, aspartic acid, succinic acid and citrulline were significantly reduced, while the contents of 5-hydroxyproline, taurine, hypotaurine and glutamic acid significantly increased. These major differential compounds are involved in the arginine metabolic pathway, nitrogen excretion, and the metabolism of taurine and hypotaurine, suggesting that Qi Wei anti-burn Tincture reprogramed the above metabolic processes in the liver. Furthermore, the application of Qi Wei anti-burn Tincture increased the expression of TGF-β1 and FGF-2, and reduced the levels of TNF-α, IL-1β, IL-6 and reactive oxygen species in the liver of mice induced by burn injury. This study found that Qi Wei anti-burn Tincture treatment promoted metabolic pathway remodeling in liver, which might be a potential mechanism for Qi Wei anti-burn Tincture to treat burn wounds.
Publisher
Oxford University Press (OUP)
Subject
Rehabilitation,Emergency Medicine,Surgery