Quadriceps Femoris Muscle Torques and Fatigue Generated by Neuromuscular Electrical Stimulation With Three Different Waveforms

Author:

Laufer Yocheved1,Ries Julie Deanne2,Leininger Peter M3,Alon Gad4

Affiliation:

1. Y Laufer, PT, PhD, is Head of the Physical Therapy Program, Faculty of Social Welfare and Health Studies, University of Haifa, Mount Carmel, 31905, Haifa, Israel. She was Visiting Professor, Department of Physical Therapy, Marymount University, Arlington, Va, at the time of the study.

2. JD Ries, PT, MA, GCS, is Assistant Professor, Physical Therapy Program, Marymount University

3. PM Leininger, PT, MS, OCS is Lecturer, Physical Therapy Department, The University of Scranton, Scranton, Pa. He was Instructor, Physical Therapy Department, Howard University, Washington, DC, at the time of the study

4. G Alon, PT, PhD, is Assistant Professor, Physical Therapy Department, School of Medicine, University of Maryland, Baltimore, Md

Abstract

Abstract Background and Purpose. Neuromuscular electrical stimulation is used by physical therapists to improve muscle performance. Optimal forms of stimulation settings are yet to be determined, as are possible sex-related differences in responsiveness to electrical stimulation. The objectives of the study were: (1) to compare the ability of 3 different waveforms to generate isometric contractions of the quadriceps femoris muscles of individuals without known impairments, (2) to compare muscle fatigue caused by repeated contractions induced by these same waveforms, and (3) to examine the effect of sex on muscle force production and fatigue induced by electrical stimulation. Subjects. Fifteen women and 15 men (mean age=29.5 years, SD=5.4, range=22–38) participated in the study. Methods. A portable battery-operated stimulator was used to generate either a monophasic or biphasic rectangular waveform. A stimulator that was plugged into an electrical outlet was used to generate a 2,500-Hz alternating current. Phase duration, frequency, and on-off ratios were kept identical for both stimulators. Participants did not know the type of waveform being used. Torque was measured using a computerized dynamometer: a maximal voluntary isometric contraction (MVIC) of the right quadriceps femoris muscle set at 60 degrees of knee flexion was determined during the first session. In each of the 3 testing sessions, torque of contraction and fatigue elicited by one waveform were measured. Order of testing was randomized. Torque elicited by electrical stimulation was expressed as a percentage of average MVIC. A mixed-model analysis of variance was used to determine the effect of stimulation and sex on strength of contraction and fatigue. Bonferroni-corrected post hoc tests were used to further distinguish between the effects of the 3 stimulus waveforms. Results. The results indicated that the monophasic and biphasic waveforms generated contractions with greater torque than the polyphasic waveform. These 2 waveforms also were less fatiguing. The torques from the maximally tolerated electrically elicited contractions were greater for the male subjects than for the female subjects. Discussion and Conclusion. Muscle torque and fatigue of electrically induced contractions depend on the waveform used to stimulate the contraction, with monophasic and biphasic waveforms having an advantage over the polyphasic waveform. All tested waveforms elicited, on average, stronger contractions in male subjects than in female subjects when measured as a percentage of MVIC.

Publisher

Oxford University Press (OUP)

Subject

Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3