A Composite Likelihood Approach for Dynamic Structural Models

Author:

Canova Fabio1,Matthes Christian2

Affiliation:

1. BI Norwegian Business School, CAMP & CEPR, Norway

2. Indiana University, United States

Abstract

Abstract We explain how to use the composite likelihood function to ameliorate estimation, computational and inferential problems in dynamic stochastic general equilibrium models. We combine the information present in different models or data sets to estimate the parameters common across models. We provide intuition for why the methodology works and alternative interpretations of the estimators we construct and of the statistics we employ. We present a number of situations where the methodology has the potential to resolve well-known problems and to provide a justification for existing practices that pool different estimates. In each case, we provide an example to illustrate how the approach works and its properties in practice.

Funder

Spanish Ministerio de Economia y Competitividad

FEDER

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference53 articles.

1. ‘Estimating HANK: macro time series and micro moments’;Acharya,2020

2. ‘Forecast combinations’;Aiolfi,2010

3. ‘Firm-specific capital, nominal rigidities and the business cycle’;Altig;Review of Economic Dynamics,2011

4. ‘The pruned state space system for non-linear DSGE models: theory and empirical applications’;Andreasen;Review of Economic Studies,2018

5. ‘Structural interpretation of vector autoregressions with incomplete identification: revisiting the role of oil supply and demand shocks’;Baumeister;American Economic Review,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Averaging impulse responses using prediction pools;Journal of Monetary Economics;2024-09

2. Robust analysis of stepped wedge trials using composite likelihood models;Statistics in Medicine;2024-06-04

3. Should we trust cross‐sectional multiplier estimates?;Journal of Applied Econometrics;2024-03-05

4. On the Validity of Classical and Bayesian DSGE-Based Inference;Staff Reports (Federal Reserve Bank of New York);2024-01

5. On the Validity of Classical and Bayesian DSGE-Based Inference;SSRN Electronic Journal;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3