Generalizable prediction of COVID-19 mortality on worldwide patient data

Author:

Edelson Maxim1,Kuo Tsung-Ting2ORCID

Affiliation:

1. UCSD Department of Computer Science and Engineering, University of California San Diego , La Jolla, California, USA

2. UCSD Health Department of Biomedical Informatics, University of California San Diego , La Jolla, California, USA

Abstract

Abstract Objective Predicting Coronavirus disease 2019 (COVID-19) mortality for patients is critical for early-stage care and intervention. Existing studies mainly built models on datasets with limited geographical range or size. In this study, we developed COVID-19 mortality prediction models on worldwide, large-scale “sparse” data and on a “dense” subset of the data. Materials and Methods We evaluated 6 classifiers, including logistic regression (LR), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), AdaBoost (AB), and Naive Bayes (NB). We also conducted temporal analysis and calibrated our models using Isotonic Regression. Results The results showed that AB outperformed the other classifiers for the sparse dataset, while LR provided the highest-performing results for the dense dataset (with area under the receiver operating characteristic curve, or AUC ≈ 0.7 for the sparse dataset and AUC = 0.963 for the dense one). We also identified impactful features such as symptoms, countries, age, and the date of death/discharge. All our models are well-calibrated (P > .1). Discussion Our results highlight the tradeoff of using sparse training data to increase generalizability versus training on denser data, which produces higher discrimination results. We found that covariates such as patient information on symptoms, countries (where the case was reported), age, and the date of discharge from the hospital or death were the most important for mortality prediction. Conclusion This study is a stepping-stone towards improving healthcare quality during the COVID-19 era and potentially other pandemics. Our code is publicly available at: https://doi.org/10.5281/zenodo.6336231.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3