Patient similarity by joint matrix trifactorization to identify subgroups in acute myeloid leukemia

Author:

Vitali F123ORCID,Marini S4,Pala D5,Demartini A56,Montoli S56,Zambelli A7,Bellazzi R568

Affiliation:

1. Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, Arizona, USA

2. BIO5 Institute, The University of Arizona, Tucson, Arizona, USA

3. Department of Medicine, The University of Arizona, Tucson, AZ, USA

4. Department of Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA

5. Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy

6. Centre for Health Technologies, University of Pavia, PV, Italy

7. Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, BG, Italy

8. IRCCS Istituti Clinici Scientifici Maugeri, Pavia, PV, Italy

Abstract

Abstract Objective Computing patients’ similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motivates the development of new methods to compute patient similarities able to fuse heterogeneous data sources with the available knowledge. Materials and Methods In this work, we developed a data integration approach based on matrix trifactorization to compute patient similarities by integrating several sources of data and knowledge. We assess the accuracy of the proposed method: (1) on several synthetic data sets which similarity structures are affected by increasing levels of noise and data sparsity, and (2) on a real data set coming from an acute myeloid leukemia (AML) study. The results obtained are finally compared with the ones of traditional similarity calculation methods. Results In the analysis of the synthetic data set, where the ground truth is known, we measured the capability of reconstructing the correct clusters, while in the AML study we evaluated the Kaplan-Meier curves obtained with the different clusters and measured their statistical difference by means of the log-rank test. In presence of noise and sparse data, our data integration method outperform other techniques, both in the synthetic and in the AML data. Discussion In case of multiple heterogeneous data sources, a matrix trifactorization technique can successfully fuse all the information in a joint model. We demonstrated how this approach can be efficiently applied to discover meaningful patient similarities and therefore may be considered a reliable data driven strategy for the definition of new research hypothesis for precision oncology. Conclusion The better performance of the proposed approach presents an advantage over previous methods to provide accurate patient similarities supporting precision medicine.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3