Development of a keyword library for capturing PRO-CTCAE-focused “symptom talk” in oncology conversations

Author:

Durieux Brigitte N1,Zverev Samuel R12,Tarbi Elise C13,Kwok Anne1,Sciacca Kate14,Pollak Kathryn I56,Tulsky James A17,Lindvall Charlotta178

Affiliation:

1. Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute , Boston, Massachusetts, USA

2. NYU School of Medicine, New York University , New York, New York, USA

3. Department of Nursing, University of Vermont , Burlington, Vermont, USA

4. Department of Palliative Medicine, Brigham and Women’s Hospital , Boston, Massachusetts, USA

5. Department of Population Health Sciences, Duke University School of Medicine, Duke University , Durham, North Carolina, USA

6. Cancer Prevention and Control Program, Duke Cancer Institute, Duke University , Durham, North Carolina, USA

7. Department of Medicine, Brigham and Women’s Hospital , Boston, Massachusetts, USA

8. Harvard Medical School, Harvard University , Boston, Massachusetts, USA

Abstract

Abstract Objectives As computational methods for detecting symptoms can help us better attend to patient suffering, the objectives of this study were to develop and evaluate the performance of a natural language processing keyword library for detecting symptom talk, and to describe symptom communication within our dataset to generate insights for future model building. Materials and Methods This was a secondary analysis of 121 transcribed outpatient oncology conversations from the Communication in Oncologist-Patient Encounters trial. Through an iterative process of identifying symptom expressions via inductive and deductive techniques, we generated a library of keywords relevant to the Patient-Reported Outcome version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) framework from 90 conversations, and tested the library on 31 additional transcripts. To contextualize symptom expressions and the nature of misclassifications, we qualitatively analyzed 450 mislabeled and properly labeled symptom-positive turns. Results The final library, comprising 1320 terms, identified symptom talk among conversation turns with an F1 of 0.82 against a PRO-CTCAE-focused gold standard, and an F1 of 0.61 against a broad gold standard. Qualitative observations suggest that physical symptoms are more easily detected than psychological symptoms (eg, anxiety), and ambiguity persists throughout symptom communication. Discussion This rudimentary keyword library captures most PRO-CTCAE-focused symptom talk, but the ambiguity of symptom speech limits the utility of rule-based methods alone, and limits to generalizability must be considered. Conclusion Our findings highlight opportunities for more advanced computational models to detect symptom expressions from transcribed clinical conversations. Future improvements in speech-to-text could enable real-time detection at scale.

Funder

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3