Toward alert triage: scalable qualitative coding framework for analyzing alert notes from the Telehealth Intervention Program for Seniors (TIPS)

Author:

Nguyen Phuong1ORCID,Schiaffino Melody K2ORCID,Zhang Zhan3,Choi Hyung Wook4,Huh-Yoo Jina4ORCID

Affiliation:

1. Department of Computer Science, University of Iowa, Iowa City, Iowa, USA

2. School of Public Health, San Diego State University , San Diego, California, USA

3. Seidenberg School of Computer Science and Information Systems, Pace University , New York, New York, USA

4. Department of Information Science, Drexel University , Philadelphia, Pennsylvania, USA

Abstract

Abstract Objective Combined with mobile monitoring devices, telehealth generates overwhelming data, which could cause clinician burnout and overlooking critical patient status. Developing novel and efficient ways to correctly triage such data will be critical to a successful telehealth adoption. We aim to develop an automated classification framework of existing nurses’ notes for each alert that will serve as a training dataset for a future alert triage system for telehealth programs. Materials and Methods We analyzed and developed a coding framework and a regular expression-based keyword match approach based on the information of 24 931 alert notes from a community-based telehealth program. We evaluated our automated alert triaging model for its scalability on a stratified sampling of 800 alert notes for precision and recall analysis. Results We found 22 717 out of 24 579 alert notes (92%) belonging to at least one of the 17 codes. The evaluation of the automated alert note analysis using the regular expression-based information extraction approach resulted in an average precision of 0.86 (SD = 0.13) and recall 0.90 (SD = 0.13). Discussion The high-performance results show the feasibility and the scalability potential of this approach in community-based, low-income older adult telehealth settings. The resulting coded alert notes can be combined with participants’ health monitoring results to generate predictive models and to triage false alerts. The findings build steps toward developing an automated alert triaging model to improve the identification of alert types in remote health monitoring and telehealth systems.

Funder

National Science Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3