Risky business: a scoping review for communicating results of predictive models between providers and patients

Author:

Walsh Colin G123ORCID,McKillop Mollie M4,Lee Patricia5,Harris Joyce W1,Simpson Christopher1,Novak Laurie Lovett1ORCID

Affiliation:

1. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA

2. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA

3. Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA

4. Center for AI Research and Evaluation, IBM Watson Health, Cambridge, Massachusetts, USA

5. Center for Knowledge Management, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Abstract

Abstract Objective Given widespread excitement around predictive analytics and the proliferation of machine learning algorithms that predict outcomes, a key next step is understanding how this information is—or should be—communicated with patients. Materials and Methods We conducted a scoping review informed by PRISMA-ScR guidelines to identify current knowledge and gaps in this domain. Results Ten studies met inclusion criteria for full text review. The following topics were represented in the studies, some of which involved more than 1 topic: disease prevention (N = 5/10, 50%), treatment decisions (N = 5/10, 50%), medication harms reduction (N = 1/10, 10%), and presentation of cardiovascular risk information (N = 5/10, 50%). A single study included 6- and 12-month clinical outcome metrics. Discussion As predictive models are increasingly published, marketed by industry, and implemented, this paucity of relevant research poses important gaps. Published studies identified the importance of (1) identifying the most effective source of information for patient communications; (2) contextualizing risk information and associated design elements based on users’ needs and problem areas; and (3) understanding potential impacts on risk factor modification and behavior change dependent on risk presentation. Conclusion An opportunity remains for researchers and practitioners to share strategies for effective selection of predictive algorithms for clinical practice, approaches for educating clinicians and patients in effectively using predictive data, and new approaches for framing patient-provider communication in the era of artificial intelligence.

Funder

Vanderbilt University Medical Center

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3