Evaluating the utility of synthetic COVID-19 case data

Author:

El Emam Khaled123,Mosquera Lucy3,Jonker Elizabeth2,Sood Harpreet45

Affiliation:

1. School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada

2. Electronic Health Information Laboratory, Childrens Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada

3. Data Science, Replica Analytics Ltd, Ottawa, Ontario, Canada

4. London School of Economics, London, UK

5. National Health Service, London, UK

Abstract

Abstract Background Concerns about patient privacy have limited access to COVID-19 datasets. Data synthesis is one approach for making such data broadly available to the research community in a privacy protective manner. Objectives Evaluate the utility of synthetic data by comparing analysis results between real and synthetic data. Methods A gradient boosted classification tree was built to predict death using Ontario’s 90 514 COVID-19 case records linked with community comorbidity, demographic, and socioeconomic characteristics. Model accuracy and relationships were evaluated, as well as privacy risks. The same model was developed on a synthesized dataset and compared to one from the original data. Results The AUROC and AUPRC for the real data model were 0.945 [95% confidence interval (CI), 0.941–0.948] and 0.34 (95% CI, 0.313–0.368), respectively. The synthetic data model had AUROC and AUPRC of 0.94 (95% CI, 0.936–0.944) and 0.313 (95% CI, 0.286–0.342) with confidence interval overlap of 45.05% and 52.02% when compared with the real data. The most important predictors of death for the real and synthetic models were in descending order: age, days since January 1, 2020, type of exposure, and gender. The functional relationships were similar between the two data sets. Attribute disclosure risks were 0.0585, and membership disclosure risk was low. Conclusions This synthetic dataset could be used as a proxy for the real dataset.

Funder

Children’s Hospital of Eastern Ontario Research Institute Research Ethics Board

Compute Ontario (computeontario.ca) and Compute Canada

Natural Sciences and Engineering Research Council of Canada, and by Replica Analytics Ltd

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3