A mobile app for delirium screening

Author:

Armstrong Brett1,Habtemariam Daniel2,Husser Erica3,Leslie Douglas L3,Boltz Marie3,Jung Yoojin4,Fick Donna M3,Inouye Sharon K256,Marcantonio Edward R456,Ngo Long H467

Affiliation:

1. University of New England College of Osteopathic Medicine, Biddeford, Maine, USA

2. The Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA

3. The Colleges of Nursing and Medicine, The Pennsylvania State University, University Park, Pennsylvania, USA

4. Division of General Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

5. Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

6. Harvard Medical School, Boston, Massachusetts, USA

7. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA

Abstract

Abstract Objective The objective of this study is to describe the algorithm and technical implementation of a mobile app that uses adaptive testing to assess an efficient mobile app for the diagnosis of delirium. Materials and Methods The app was used as part of a NIH-funded project to assess the feasibility, effectiveness, administration time, and costs of the 2-step delirium identification protocol when performed by physicians and nurses, and certified nursing assistants (CNA). The cohort included 535 hospitalized patients aged 79.7 (SD = 6.6) years enrolled at 2 different sites. Each patient was assessed on 2 consecutive days by the research associate who performed the reference delirium assessment. Thereafter, physicians, nurses, and CNAs performed adaptive delirium assessments using the app. Qualitative data to assess the experience of administering the 2-step protocol, and the app usability were also collected and analyzed from 50 physicians, 189 nurses, and 83 CNAs. We used extensible hypertext markup language (XHTML) and JavaScript to develop the app for the iOS–based iPad. The App was linked to Research Electronic Data Capture (REDCap), a relational database system, via a REDCap application programming interface (API) that sent and received data from/to the app. The data from REDCap were sent to the Statistical Analysis System for statistical analysis. Results The app graphical interface was successfully implemented by XHTML and JavaScript. The API facilitated the instant updating and retrieval of delirium status data between REDCap and the app. Clinicians performed 881 delirium assessments using the app for 535 patients. The transmission of data between the app and the REDCap system showed no errors. Qualitative data indicated that the users were enthusiastic about using the app with no negative comments, 82% positive comments, and 18% suggestions of improvement. Delirium administration time for the 2-step protocol showed similar total time between nurses and physicians (103.9 vs 106.5 seconds). Weekly enrollment reports of the app data were generated for study tracking purposes, and the data are being used for statistical analyses for publications. Discussion The app developed using iOS could be easily converted to other operating systems such as Android and could be linked to other relational databases beside REDCap, such as electronic health records to facilitate better data retrieval and updating of patient’s delirium status. Conclusion Our app operationalizes an adaptive 2-step delirium screening protocol. Its algorithm and cross-plat formed code of XHTML and JavaScript can be easily exported to other operating systems and hardware platforms, thus enabling wider use of the efficient delirium screening protocol that we have developed. The app is currently implemented as a research tool, but with adaptation could be implemented in the clinical setting to facilitate widespread delirium screening in hospitalized older adults.

Funder

National Institute on Aging

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3