Using large language models for safety-related table summarization in clinical study reports

Author:

Landman Rogier1,Healey Sean P1,Loprinzo Vittorio1,Kochendoerfer Ulrike1,Winnier Angela Russell1,Henstock Peter V1,Lin Wenyi1,Chen Aqiu1,Rajendran Arthi1,Penshanwar Sushant1,Khan Sheraz1,Madhavan Subha1

Affiliation:

1. Pfizer Research and Development , New York, NY 10001, United States

Abstract

Abstract Objectives The generation of structured documents for clinical trials is a promising application of large language models (LLMs). We share opportunities, insights, and challenges from a competitive challenge that used LLMs for automating clinical trial documentation. Materials and Methods As part of a challenge initiated by Pfizer (organizer), several teams (participant) created a pilot for generating summaries of safety tables for clinical study reports (CSRs). Our evaluation framework used automated metrics and expert reviews to assess the quality of AI-generated documents. Results The comparative analysis revealed differences in performance across solutions, particularly in factual accuracy and lean writing. Most participants employed prompt engineering with generative pre-trained transformer (GPT) models. Discussion We discuss areas for improvement, including better ingestion of tables, addition of context and fine-tuning. Conclusion The challenge results demonstrate the potential of LLMs in automating table summarization in CSRs while also revealing the importance of human involvement and continued research to optimize this technology.

Funder

Pfizer Inc

Publisher

Oxford University Press (OUP)

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3