Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports

Author:

De Angeli Kevin12ORCID,Gao Shang1,Blanchard Andrew1,Durbin Eric B3ORCID,Wu Xiao-Cheng4,Stroup Antoinette5,Doherty Jennifer6,Schwartz Stephen M7,Wiggins Charles8,Coyle Linda9,Penberthy Lynne10,Tourassi Georgia1,Yoon Hong-Jun1

Affiliation:

1. Oak Ridge National Laboratory , Oak Ridge, Tennessee, USA

2. University of Tennessee , Knoxville, Tennessee, USA

3. College of Medicine, University of Kentucky , Lexington, Kentucky, USA

4. Louisiana Tumor Registry, Louisiana State University Health Sciences Center School of Public Health , New Orleans, Louisiana, USA

5. Rutgers Cancer Institute of New Jersey , New Brunswick, New Jersey, USA

6. Utah Cancer Registry, Huntsman Cancer Institute, University of Utah , Salt Lake City, Utah, USA

7. Fred Hutchinson Cancer Center, Epidemiology Program , Seattle, Washington, USA

8. University of New Mexico , Albuquerque, New Mexico, USA

9. Information Management Services Inc. , Calverton, Maryland, USA

10. National Cancer Institute , Bethesda, Maryland, USA

Abstract

Lay Summary One of the goals of the Surveillance, Epidemiology, and End Results (SEER) program is to estimate incidence, prevalence, and mortality of all cancers. To that end, cancer registries across the country maintain a massive database of cancer pathology reports which contain rich information to understand cancer trends. However, these reports are stored in the form of unstructured text, and human annotators are required to read and extract relevant information. In this article, we show that existing deep learning models for automating information extraction from cancer pathology reports can be significantly improved by using ensemble model distillation. We found that by training multiple predictive models and transferring their knowledge to a single, low-resource model, we can reduce the number of highly confident wrong predictions. Our results show that our implemented methods could save 1000s of manual annotation hours.

Funder

NCI’s SEER Program

Commonwealth of Kentucky

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3