Can feature structure improve model’s precision? A novel prediction method using artificial image and image identification

Author:

He Yupeng1ORCID,Sun Qiwen2,Matsunaga Masaaki1,Ota Atsuhiko1

Affiliation:

1. Department of Public Health, Fujita Health University School of Medicine , Toyoake, Aichi 4701192, Japan

2. Independent scholar , Nagoya, Aichi 4640831, Japan

Abstract

Abstract Objectives This study aimed to develop an approach to enhance the model precision by artificial images. Materials and Methods Given an epidemiological study designed to predict 1 response using f features with M samples, each feature was converted into a pixel with certain value. Permutated these pixels into F orders, resulting in F distinct artificial image sample sets. Based on the experience of image recognition techniques, appropriate training images results in higher precision model. In the preliminary experiment, a binary response was predicted by 76 features, the sample set included 223 patients and 1776 healthy controls. Results We randomly selected 10 000 artificial sample sets to train the model. Models’ performance (area under the receiver operating characteristic curve values) depicted a bell-shaped distribution. Conclusion The model construction strategy developed in the research has potential to capture feature order related information and enhance model predictability.

Funder

Fujita Health University

Japan Society for the Promotion of Science

Ministry of Health, Labour and Welfare

Publisher

Oxford University Press (OUP)

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3