Bridging information gaps in menopause status classification through natural language processing

Author:

Eyre Hannah12,Alba Patrick R12,Gibson Carolyn J34,Gatsby Elise1,Lynch Kristine E12,Patterson Olga V12ORCID,DuVall Scott L12

Affiliation:

1. VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System , Salt Lake City, UT 84113, United States

2. Department of Internal Medicine, School of Medicine, University of Utah , Salt Lake City, UT 84112, United States

3. San Francisco VA Healthcare System , San Francisco, CA 94121, United States

4. University of California, San Francisco , San Francisco, CA 94115, United States

Abstract

Abstract Objective To use natural language processing (NLP) of clinical notes to augment existing structured electronic health record (EHR) data for classification of a patient’s menopausal status. Materials and methods A rule-based NLP system was designed to capture evidence of a patient’s menopause status including dates of a patient’s last menstrual period, reproductive surgeries, and postmenopause diagnosis as well as their use of birth control and menstrual interruptions. NLP-derived output was used in combination with structured EHR data to classify a patient’s menopausal status. NLP processing and patient classification were performed on a cohort of 307 512 female Veterans receiving healthcare at the US Department of Veterans Affairs (VA). Results NLP was validated at 99.6% precision. Including the NLP-derived data into a menopause phenotype increased the number of patients with data relevant to their menopausal status by 118%. Using structured codes alone, 81 173 (27.0%) are able to be classified as postmenopausal or premenopausal. However, with the inclusion of NLP, this number increased 167 804 (54.6%) patients. The premenopausal category grew by 532.7% with the inclusion of NLP data. Discussion By employing NLP, it became possible to identify documented data elements that predate VA care, originate outside VA networks, or have no corresponding structured field in the VA EHR that would be otherwise inaccessible for further analysis. Conclusion NLP can be used to identify concepts relevant to a patient’s menopausal status in clinical notes. Adding NLP-derived data to an algorithm classifying a patient’s menopausal status significantly increases the number of patients classified using EHR data, ultimately enabling more detailed assessments of the impact of menopause on health outcomes.

Funder

VA Informatics and Computing Infrastructure

Put VA Data to Work for Veterans

VA Health Services Research & Development Career Development Award

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3