An exploratory data quality analysis of time series physiologic signals using a large-scale intensive care unit database

Author:

Afshar Ali S1,Li Yijun2,Chen Zixu3,Chen Yuxuan3,Lee Jae Hun3,Irani Darius3,Crank Aidan3,Singh Digvijay3,Kanter Michael4,Faraday Nauder1,Kharrazi Hadi56

Affiliation:

1. Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland USA

2. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

3. Department of Computer Science, Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, USA

4. Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA

5. Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

6. Division of Health Sciences Informatics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA

Abstract

Abstract Physiological data, such as heart rate and blood pressure, are critical to clinical decision-making in the intensive care unit (ICU). Vital signs data, which are available from electronic health records, can be used to diagnose and predict important clinical outcomes; While there have been some reports on the data quality of nurse-verified vital sign data, little has been reported on the data quality of higher frequency time-series vital signs acquired in ICUs, that would enable such predictive modeling. In this study, we assessed the data quality issues, defined as the completeness, accuracy, and timeliness, of minute-by-minute time series vital signs data within the MIMIC-III data set, captured from 16009 patient-ICU stays and corresponding to 9410 unique adult patients. We measured data quality of four time-series vital signs data streams in the MIMIC-III data set: heart rate (HR), respiratory rate (RR), blood oxygen saturation (SpO2), and arterial blood pressure (ABP). Approximately, 30% of patient-ICU stays did not have at least 1 min of data during the time-frame of the ICU stay for HR, RR, and SpO2. The percentage of patient-ICU stays that did not have at least 1 min of ABP data was ∼56%. We observed ∼80% coverage of the total duration of the ICU stay for HR, RR, and SpO2. Finally, only 12.5%%, 9.9%, 7.5%, and 4.4% of ICU lengths of stay had ≥ 99% data available for HR, RR, SpO2, and ABP, respectively, that would meet the three data quality requirements we looked into in this study. Our findings on data completeness, accuracy, and timeliness have important implications for data scientists and informatics researchers who use time series vital signs data to develop predictive models of ICU outcomes.

Funder

TEDCO Maryland Innovation Initiative

Johns Hopkins Center for Population Health IT

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3