Generative artificial intelligence responses to patient messages in the electronic health record: early lessons learned

Author:

Baxter Sally L12ORCID,Longhurst Christopher A2,Millen Marlene23,Sitapati Amy M23,Tai-Seale Ming24ORCID

Affiliation:

1. Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego , La Jolla, CA 92093, United States

2. Health Department of Biomedical Informatics, University of California San Diego Health , La Jolla, CA 92093, United States

3. Division of Internal Medicine, Department of Medicine, University of California San Diego , La Jolla, CA 92093, United States

4. Department of Family Medicine, University of California San Diego , La Jolla, CA 92093, United States

Abstract

Abstract Background Electronic health record (EHR)-based patient messages can contribute to burnout. Messages with a negative tone are particularly challenging to address. In this perspective, we describe our initial evaluation of large language model (LLM)-generated responses to negative EHR patient messages and contend that using LLMs to generate initial drafts may be feasible, although refinement will be needed. Methods A retrospective sample (n = 50) of negative patient messages was extracted from a health system EHR, de-identified, and inputted into an LLM (ChatGPT). Qualitative analyses were conducted to compare LLM responses to actual care team responses. Results Some LLM-generated draft responses varied from human responses in relational connection, informational content, and recommendations for next steps. Occasionally, the LLM draft responses could have potentially escalated emotionally charged conversations. Conclusion Further work is needed to optimize the use of LLMs for responding to negative patient messages in the EHR.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3