A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study

Author:

Hussain Syed-Amad1,Sezgin Emre1ORCID,Krivchenia Katelyn23,Luna John1,Rust Steve1,Huang Yungui1

Affiliation:

1. IT Research and Innovation, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA

2. Department of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA

3. Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA

Abstract

Abstract Objectives Patient-generated health data (PGHD) are important for tracking and monitoring out of clinic health events and supporting shared clinical decisions. Unstructured text as PGHD (eg, medical diary notes and transcriptions) may encapsulate rich information through narratives which can be critical to better understand a patient’s condition. We propose a natural language processing (NLP) supported data synthesis pipeline for unstructured PGHD, focusing on children with special healthcare needs (CSHCN), and demonstrate it with a case study on cystic fibrosis (CF). Materials and Methods The proposed unstructured data synthesis and information extraction pipeline extract a broad range of health information by combining rule-based approaches with pretrained deep-learning models. Particularly, we build upon the scispaCy biomedical model suite, leveraging its named entity recognition capabilities to identify and link clinically relevant entities to established ontologies such as Systematized Nomenclature of Medicine (SNOMED) and RXNORM. We then use scispaCy’s syntax (grammar) parsing tools to retrieve phrases associated with the entities in medication, dose, therapies, symptoms, bowel movements, and nutrition ontological categories. The pipeline is illustrated and tested with simulated CF patient notes. Results The proposed hybrid deep-learning rule-based approach can operate over a variety of natural language note types and allow customization for a given patient or cohort. Viable information was successfully extracted from simulated CF notes. This hybrid pipeline is robust to misspellings and varied word representations and can be tailored to accommodate the needs of a specific patient, cohort, or clinician. Discussion The NLP pipeline can extract predefined or ontology-based entities from free-text PGHD, aiming to facilitate remote care and improve chronic disease management. Our implementation makes use of open source models, allowing for this solution to be easily replicated and integrated in different health systems. Outside of the clinic, the use of the NLP pipeline may increase the amount of clinical data recorded by families of CSHCN and ease the process to identify health events from the notes. Similarly, care coordinators, nurses and clinicians would be able to track adherence with medications, identify symptoms, and effectively intervene to improve clinical care. Furthermore, visualization tools can be applied to digest the structured data produced by the pipeline in support of the decision-making process for a patient, caregiver, or provider. Conclusion Our study demonstrated that an NLP pipeline can be used to create an automated analysis and reporting mechanism for unstructured PGHD. Further studies are suggested with real-world data to assess pipeline performance and further implications.

Funder

Health Resources and Services Administration Maternal and Child Health Bureau Grand Challenge for Care Coordination for CSHCN

CTSA

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3