Comparing person-level matching algorithms to identify risk across disparate datasets among patients with a controlled substance prescription: retrospective analysis

Author:

Ferris Lindsey M12,Weiner Jonathan P13,Saloner Brendan1,Kharrazi Hadi13

Affiliation:

1. Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

2. The Chesapeake Regional Information System for our Patients, Baltimore, Maryland, USA

3. Johns Hopkins Center for Population Health Information Technology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

Abstract

Abstract Background The opioid epidemic in the United States has precipitated a need for public health agencies to better understand risk factors associated with fatal overdoses. Matching person-level information stored in public health, medical, and human services datasets can enhance the understanding of opioid overdose risk factors and interventions. Objective This study compares approximate match versus exact match algorithms to link disparate datasets together for identifying persons at risk from an applied perspective. Methods This study used statewide prescription drug monitoring program (PDMP), arrest, and mortality data matched at the person-level using an approximate match and 2 exact match algorithms. Impact of matching was assessed by analyzing 3 independent concepts: (1) the prevalence of key risk indicators used by PDMP programs in practice, (2) the prevalence of arrests and fatal opioid overdose, and (3) the performance of a multivariate logistic regression for fatal opioid overdose. The PDMP key risk indicators included (1) multiple provider episodes (MPE), or patients with prescriptions from multiple prescribers and dispensers, (2) high morphine milligram equivalents (MMEs), which represents an opioid’s potency relative to morphine, and (3) overlapping opioid and benzodiazepine prescriptions. Results Prevalence of PDMP-based risk indicators were higher in the approximate match population for MPEs (n = 4893/1 859 445 [0.26%]) and overlapping opioid/benzodiazepines (n = 57 888/1 859 445 [4.71%]), but the exact-basic match population had the highest prevalence of individuals with high MMEs (n = 664/1 910 741 [3.11%]). Prevalence of arrests and deaths were highest for the approximate match population compared with the exact match populations. Model performance was comparable across the 3 matching algorithms (exact-basic validation area under the receiver operating characteristic curve [AUC]: 0.854; approximate validation AUC: 0.847; exact + zip validation AUC: 0.826) but resulted in different cutoff points balancing sensitivity and specificity. Conclusions Our study illustrates the specific tradeoffs of different matching methods. Further research should be performed to compare matching algorithms and its impact on the prevalence of key risk indicators in an applied setting that can improve understanding of risk within a population.

Funder

Bureau of Justice Assistance

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference32 articles.

1. IT-enabled community health interventions: challenges, opportunities, and future directions;Kharrazi;EGEMS (Wash DC),2014

2. When to conduct probabilistic linkage vs. deterministic linkage? A simulation study;Zhu;J Biomed Inform,2015

3. Record linkage software in the public domain: a comparison of link plus, the link king, and a ‘basic’ deterministic algorithm;Campbell;Health Informatics J,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3