A tale of three subspecialties: Diagnosis recording patterns are internally consistent but Specialty-Dependent

Author:

Diaz-Garelli Jose-Franck1ORCID,Strowd Roy1,Ahmed Tamjeed1,Wells Brian J1,Merrill Rebecca1,Laurini Javier1,Pasche Boris1,Topaloglu Umit1

Affiliation:

1. Wake Forest Baptist Medical Center, Winston Salem, North Carolina, USA

Abstract

Abstract Background Structured diagnosis (DX) are crucial for secondary use of electronic health record (EHR) data. However, they are often suboptimally recorded. Our previous work showed initial evidence of variable DX recording patterns in oncology charts even after biopsy records are available. Objective We verified this finding’s internal and external validity. We hypothesized that this recording pattern would be preserved in a larger cohort of patients for the same disease. We also hypothesized that this effect would vary across subspecialties. Methods We extracted DX data from EHRs of patients treated for brain, lung, and pancreatic neoplasms, identified through clinician-led chart reviews. We used statistical methods (i.e., binomial and mixed model regressions) to test our hypotheses. Results We found variable recording patterns in brain neoplasm DX (i.e., larger number of distinct DX—OR = 2.2, P < 0.0001, higher descriptive specificity scores—OR = 1.4, P < 0.0001—and much higher entropy after the BX—OR = 3.8 P = 0.004 and OR = 8.0, P < 0.0001), confirming our initial findings. We also found strikingly different patterns for lung and pancreas DX. Although both seemed to have much lower DX sequence entropy after the BX—OR = 0.198, P = 0.015 and OR = 0.099, P = 0.015, respectively compared to OR = 3.8 P = 0.004). We also found statistically significant differences between the brain dataset and both the lung (P < 0.0001) and pancreas (0.009<P < 0.08). Conclusion Our results suggest that disease-specific DX entry patterns exist and are established differently by clinical subspecialty. These differences should be accounted for during clinical data reuse and data quality assessments but also during EHR entry system design to maximize accurate, precise and consistent data entry likelihood.

Funder

National Cancer Institute to the Comprehensive Cancer Center

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3