3D-printed gelatin methacrylate (GelMA)/silanated silica scaffold assisted by two-stage cooling system for hard tissue regeneration

Author:

Choi Eunjeong1,Kim Dongyun2,Kang Donggu1,Yang Gi Hoon1,Jung Bongsu3,Yeo MyungGu3ORCID,Park Min-Jeong3ORCID,An SangHyun4,Lee KyoungHo4,Kim Jun Sik4,Kim Jong Chul4,Jeong Woonhyeok5,Yoo Hye Hyun6,Jeon Hojun1ORCID

Affiliation:

1. Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-do 15588, South Korea

2. Department of Mechanical Engineering, Korea Polytechnic University, Sangidaehak-ro, Siheung, Gyeonggi-do 15073, South Korea

3. Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80, Cheombok-ro, Dong-gu, Daegu 41061, South Korea

4. Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, South Korea

5. Department of Plastic and Reconstructive Surgery, Dongsan Medical Center, Keimyung University College of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu 42601, South Korea

6. Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588, South Korea

Abstract

Abstract Among many biomaterials, gelatin methacrylate (GelMA), a photocurable protein, has been widely used in 3D bioprinting process owing to its excellent cellular responses, biocompatibility and biodegradability. However, GelMA still shows a low processability due to the severe temperature dependence of viscosity. To overcome this obstacle, we propose a two-stage temperature control system to effectively control the viscosity of GelMA. To optimize the process conditions, we evaluated the temperature of the cooling system (jacket and stage). Using the established system, three GelMA scaffolds were fabricated in which different concentrations (0, 3 and 10 wt%) of silanated silica particles were embedded. To evaluate the performances of the prepared scaffolds suitable for hard tissue regeneration, we analyzed the physical (viscoelasticity, surface roughness, compressive modulus and wettability) and biological (human mesenchymal stem cells growth, western blotting and osteogenic differentiation) properties. Consequently, the composite scaffold with greater silica contents (10 wt%) showed enhanced physical and biological performances including mechanical strength, cell initial attachment, cell proliferation and osteogenic differentiation compared with those of the controls. Our results indicate that the GelMA/silanated silica composite scaffold can be potentially used for hard tissue regeneration.

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3