An effective method to generate controllable levels of ROS for the enhancement of HUVEC proliferation using a chlorin e6-immobilized PET film as a photo-functional biomaterial

Author:

Hong Seung Hee12,Koo Min-Ah12,Lee Mi Hee1,Seon Gyeung Mi12,Park Ye Jin13,Jeong HaKyeong13,Kim Dohyun1,Park Jong-Chul123

Affiliation:

1. Cellbiocontrol Laboratory, Department of Medical Engineering

2. Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project

3. Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea

Abstract

Abstract Reactive oxygen species (ROS) are byproducts of cellular metabolism; they play a significant role as secondary messengers in cell signaling. In cells, high concentrations of ROS induce apoptosis, senescence, and contact inhibition, while low concentrations of ROS result in angiogenesis, proliferation, and cytoskeleton remodeling. Thus, controlling ROS generation is an important factor in cell biology. We designed a chlorin e6 (Ce6)-immobilized polyethylene terephthalate (PET) film (Ce6-PET) to produce extracellular ROS under red-light irradiation. The application of Ce6-PET films can regulate the generation of ROS by altering the intensity of light-emitting diode sources. We confirmed that the Ce6-PET film could effectively promote cell growth under irradiation at 500 μW/cm2 for 30 min in human umbilical vein endothelial cells. We also found that the Ce6-PET film is more efficient in generating ROS than a Ce6-incorporated polyurethane film under the same conditions. Ce6-PET fabrication shows promise for improving the localized delivery of extracellular ROS and regulating ROS formation through the optimization of irradiation intensity.

Funder

National Research Foundation of Korea

Korean government (MSIT

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3