Transferability of bone phenotyping and fracture risk assessment by μFRAC from first-generation high-resolution peripheral quantitative computed tomography to second-generation scan data

Author:

Bugbird Annabel R12,Whittier Danielle E1234,Boyd Steven K12

Affiliation:

1. McCaig Institute for Bone and Joint Health , Cumming School of Medicine, , Calgary, AB T2N 4Z6 , Canada

2. University of Calgary , Cumming School of Medicine, , Calgary, AB T2N 4Z6 , Canada

3. Department of Cell Biology and Anatomy , Cumming School of Medicine, , Calgary, AB T2N 4N1 , Canada

4. Alberta Children’s Hospital Research Institute, University of Calgary , Cumming School of Medicine, , Calgary, AB T2N 4N1 , Canada

Abstract

Abstract Introduction The continued development of high-resolution peripheral quantitative computed tomography (HR-pQCT) has led to a second-generation scanner with higher resolution and longer scan region. However, large multicenter prospective cohorts were collected with first-generation HR-pQCT and have been used to develop bone phenotyping and fracture risk prediction (μFRAC) models. This study establishes whether there is sufficient universality of these first-generation trained models for use with second-generation scan data. Methods HR-pQCT data were collected for a cohort of 60 individuals, who had been scanned on both first- and second-generation scanners on the same day to establish the universality of the HR-pQCT models. These data were each used as input to first-generation trained bone microarchitecture models for bone phenotyping and fracture risk prediction, and their outputs were compared for each study participant. Reproducibility of the models were assessed using same-day repeat scans obtained from first-generation (n = 37) and second-generation (n = 74) scanners. Results Across scanner generations, the bone phenotyping model performed with an accuracy of 93.1%. Similarly, the 5-year fracture risk assessment by μFRAC was well correlated with a Pearson’s (r) correlation coefficient of r > 0.83 for the three variations of μFRAC (varying inclusion of clinical risk factors, finite element analysis, and dual X-ray absorptiometry). The first-generation reproducibility cohort performed with an accuracy for categorical assignment of 100% (bone phenotyping) and a correlation coefficient of 0.99 (μFRAC), whereas the second-generation reproducibility cohort performed with an accuracy of 96.4% (bone phenotyping) and a correlation coefficient of 0.99 (μFRAC). Conclusion We demonstrated that bone microarchitecture models trained using first-generation scan data generalize well to second-generation scans, performing with a high level of accuracy and reproducibility. Less than 4% of individuals’ estimated fracture risk led to a change in treatment threshold, and in general, these dissimilar outcomes using second-generation data tended to be more conservative.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3