Dissecting Characteristics Nonparametrically

Author:

Freyberger Joachim1,Neuhierl Andreas2,Weber Michael3

Affiliation:

1. University of Wisconsin-Madison

2. Olin Business School

3. University of Chicago

Abstract

Abstract We propose a nonparametric method to study which characteristics provide incremental information for the cross-section of expected returns. We use the adaptive group LASSO to select characteristics and to estimate how selected characteristics affect expected returns nonparametrically. Our method can handle a large number of characteristics and allows for a flexible functional form. Our implementation is insensitive to outliers. Many of the previously identified return predictors don’t provide incremental information for expected returns, and nonlinearities are important. We study our method’s properties in simulations and find large improvements in both model selection and prediction compared to alternative selection methods. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference94 articles.

1. Fundamental analysis, future earnings, and stock prices;Abarbanell,;Journal of Accounting Research,1997

2. Market structure and trading volume;Anderson,;Journal of Financial Research,2005

3. The cross-section of volatility and expected returns;Ang,;Journal of Finance,2006

4. Size matters, if you control your junk;Asness,;Journal of Financial Economics,2018

5. Predicting Stock Returns Using Industry-Relative Firm Characteristics

Cited by 335 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3