Prediction of dolutegravir pharmacokinetics and dose optimization in neonates via physiologically based pharmacokinetic (PBPK) modelling

Author:

Bunglawala Fazila1ORCID,Rajoli Rajith K R1ORCID,Mirochnick Mark2,Owen Andrew1,Siccardi Marco1

Affiliation:

1. Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place, Liverpool L69 3GF, UK

2. Boston University, Boston, MA, USA

Abstract

Abstract Background Only a few antiretroviral drugs (ARVs) are recommended for use during the neonatal period and there is a need for more to be approved to increase treatment and prophylaxis strategies. Dolutegravir, a selective integrase inhibitor, has potential for treatment of HIV infection and prophylaxis of transmission in neonates. Objectives To model the pharmacokinetics of dolutegravir in neonates and to simulate a theoretical optimal dosing regimen. Methods The physiologically based pharmacokinetic (PBPK) model was built incorporating the age-related changes observed in neonates. Virtual neonates between 0 and 28 days were simulated. The model was validated against observed clinical data for raltegravir and midazolam in neonates, prior to the prediction of dolutegravir pharmacokinetics. Results Both raltegravir and midazolam passed the criteria for model qualification, with simulated data within 1.8-fold of clinical data. The qualified model predicted the pharmacokinetics for several multidose regimens of dolutegravir. Regimen 6 involved 5 mg doses with a 48 h interval from Day 1–20, increasing to 5 mg once daily on Week 3, yielding AUC and Ctrough values of 37.2 mg·h/L and 1.3 mg/L, respectively. These exposures are consistent with those observed in paediatric patients receiving dolutegravir. Conclusions Dolutegravir pharmacokinetics were successfully simulated in the neonatal PBPK model. The predictions suggest that during the first 3 weeks of life a 5 mg dose administered every 48 h may achieve plasma exposures needed for therapy and prophylaxis.

Funder

University of Liverpool

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3