Hyperthermophilic Aquifex aeolicus initiates primer synthesis on a limited set of trinucleotides comprised of cytosines and guanines

Author:

Larson Marilynn A.12,Bressani Rafael12,Sayood Khalid3,Corn Jacob E.4,Berger James M.4,Griep Mark A.5,Hinrichs Steven H.12

Affiliation:

1. Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE 68198-6495

2. University of Nebraska Center for Biosecurity, Omaha, NE 68198-4080

3. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511

4. University of California, Berkeley, CA 94720

5. Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA

Abstract

Abstract The placement of the extreme thermophile Aquifex aeolicus in the bacterial phylogenetic tree has evoked much controversy. We investigated whether adaptations for growth at high temperatures would alter a key functional component of the replication machinery, specifically DnaG primase. Although the structure of bacterial primases is conserved, the trinucleotide initiation specificity for A. aeolicus was hypothesized to differ from other microbes as an adaptation to a geothermal milieu. To determine the full range of A. aeolicus primase activity, two oligonucleotides were designed that comprised all potential trinucleotide initiation sequences. One of the screening templates supported primer synthesis and the lengths of the resulting primers were used to predict possible initiation trinucleotides. Use of trinucleotide-specific templates demonstrated that the preferred initiation trinucleotide sequence for A. aeolicus primase was 5′-d(CCC)-3′. Two other sequences, 5′-d(GCC)-3′ and d(CGC)-3′, were also capable of supporting initiation, but to a much lesser degree. None of these trinucleotides were known to be recognition sequences used by other microbial primases. These results suggest that the initiation specificity of A. aeolicus primase may represent an adaptation to a thermophilic environment.

Funder

Department of Defense, Defense Advanced Research Program Agency

NIH

NIGMS

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3