Intragenic suppressors of temperature-sensitive rne mutations lead to the dissociation of RNase E activity on mRNA and tRNA substrates in Escherichia coli

Author:

Perwez Tariq1,Hami Danyal1,Maples Valerie F.1,Min Zhao2,Wang Bi-Cheng2,Kushner Sidney R.1

Affiliation:

1. Department of Genetics, Athens, GA 30602, USA

2. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA

Abstract

Abstract RNase E of Escherichia coli is an essential endoribonuclease that is involved in many aspects of RNA metabolism. Point mutations in the S1 RNA-binding domain of RNase E (rne-1 and rne-3071) lead to temperature-sensitive growth along with defects in 5S rRNA processing, mRNA decay and tRNA maturation. However, it is not clear whether RNase E acts similarly on all kinds of RNA substrates. Here we report the isolation and characterization of three independent intragenic second-site suppressors of the rne-1 and rne-3071 alleles that demonstrate for the first time the dissociation of the in vivo activity of RNase E on mRNA versus tRNA and rRNA substrates. Specifically, tRNA maturation and 9S rRNA processing were restored to wild-type levels in each of the three suppressor mutants (rne-1/172, rne-1/186 and rne-1/187), while mRNA decay and autoregulation of RNase E protein levels remained as defective as in the rne-1 single mutant. Each single amino acid substitution (Gly→ Ala at amino acid 172; Phe → Cys at amino acid 186 and Arg → Leu at amino acid 187) mapped within the 5′ sensor region of the RNase E protein. Molecular models of RNase E suggest how suppression may occur.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3