Notions of indifference for genericity: Union sets and subsequence sets

Author:

Bhojraj Tejas1

Affiliation:

1. Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Dr., Madison, WI 53706, USA

Abstract

Abstract A set $I$ is said to be a universal indifferent set for $1$-genericity if for every $1$-generic  $G$ and for all $X \subseteq I$, $G \varDelta X$ is also $1$-generic. Miller (2013, The Journal of Symbolic Logic, 78, 113–138) showed that there is no infinite universal indifferent set for $1$-genericity. We introduce two variants (union and subsequence sets for $1$-genericity) of the notion of universal indifference and prove that there are no non-trivial universal sets for $1$-genericity with respect to these notions. In contrast, we show that there is a non-computable subsequence set for weak-$1$-genericity.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference8 articles.

1. Indifferent sets for genericity;Day;The Journal of Symbolic Logic,2013

2. Algorithmic Randomness and Complexity

3. Indifferent sets;Figueira;Journal of Logic and Computation,2009

4. The strength of some combinatorial principles related to Ramsey’s theorem for pairs;Hirschfeldt, Jr,2008

5. Operators. I. The r.e. case;Jockusch;Transactions of the American Mathematical Society,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3