Affiliation:
1. Department of Mathematics and Computer Science, Drake University, Des Moines, IA 50311, USA
Abstract
Abstract
In this paper, we study Bernoulli random sequences, i.e. sequences that are Martin-Löf random with respect to a Bernoulli measure $\mu _p$ for some $p\in [0,1]$, where we allow for the possibility that $p$ is noncomputable. We focus in particular on the case in which the underlying Bernoulli parameter $p$ is proper (i.e. Martin-Löf random with respect to some computable measure). We show for every Bernoulli parameter $p$, if there is a sequence that is both proper and Martin-Löf random with respect to $\mu _p$, then $p$ itself must be proper, and explore further consequences of this result. We also study the Turing degrees of Bernoulli random sequences, showing, for instance, that the Turing degrees containing a Bernoulli random sequence do not coincide with the Turing degrees containing a Martin-Löf random sequence. Lastly, we consider several possible approaches to characterizing blind Bernoulli randomness, where the corresponding Martin-Löf tests do not have access to the Bernoulli parameter $p$, and show that these fail to characterize blind Bernoulli randomness.
Publisher
Oxford University Press (OUP)
Subject
Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. UNPRINCIPLED;The Review of Symbolic Logic;2023-06-13
2. Bernoulli randomness and Bernoulli normality;Mathematical Logic Quarterly;2021-08