Minimal degrees and downwards density in some strong positive reducibilities and quasi-reducibilities

Author:

Chitaia Irakli1,Ng Keng Meng2,Sorbi Andrea1,Yang Yue3

Affiliation:

1. Department of Mathematics, Ivane Javakhishvili Tbilisi State University , Tbilisi 0186, Georgia

2. Division of Mathematical Sciences, School of Physical & Mathematical Sciences , College of Science, Nanyang Technological University, Singapore 637371, Singapore

3. Department of Mathematics, National University of Singapore , Singapore 119076, Singapore

Abstract

Abstract We consider three strong reducibilities, $s_{1}, s_{2}, Q_{1}$ (where we identify a reducibility $\leqslant _r$ with its index $r$). The first two reducibilities can be viewed as injective versions of $s$-reducibility, whereas $Q_1$-reducibility can be viewed as an injective version of $Q$-reducibility. We have, with proper inclusions, $s_{1} \subset s_{2} \subset s$. It is well known that there is no minimal $s$-degree, and there is no minimal $Q$-degree. We show on the contrary that there exist minimal $\varDelta ^{0}_{2}$$s_{2}$-degrees and minimal $\varDelta ^{0}_{2}$$s_{1}$-degrees. On the other hand, both the $\varPi ^{0}_{1}$$s_{2}$-degrees and the $\varPi ^{0}_{1}$$s_{1}$-degrees are downwards dense. By the isomorphism of the $s_1$-degrees with the $Q_1$-degrees induced by complementation of sets, it follows that there exist minimal $\varDelta ^0_2$$Q_1$-degrees, but the c.e. $Q_{1}$-degrees are downwards dense.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference13 articles.

1. Defining totality in the enumeration degrees;Cai;Journal of the American Mathematical Society,2016

2. Hyperhypersimple sets and ${Q}\_1$-reducibility;Chitaia;Mathematical Logic Quarterly,2016

3. Notes on conjunctive and quasi degrees;Chitaia;Journal of Logic and Computation,2021

4. Automorphisms of the lattice of recursively enumerable sets: orbits;Downey;Advances in Mathematics,1992

5. Reducibility and completeness for sets of integers;Friedberg, Jr.;Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,1959

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3