Experience and prediction: a metric of hardness for a novel litmus test

Author:

Isaak Nicos1,Michael Loizos2

Affiliation:

1. Open University of Cyprus, Cyprus

2. Open University of Cyprus and CYENS Center of Excellence, Cyprus

Abstract

Abstract In the past decade, the Winograd schema challenge (WSC) has become a central aspect of the research community as a novel litmus test. Consequently, the WSC has spurred research interest because it can be seen as the means to understand human behavior. In this regard, the development of new techniques has made possible the usage of Winograd schemas in various fields, such as the design of novel forms of CAPTCHAs. Work from the literature that established a baseline for human adult performance on the WSC has shown that not all schemas are the same, meaning that they could potentially be categorized according to their perceived hardness for humans. In this regard, this hardness metric could be used in future challenges or in the WSC CAPTCHA service to differentiate between Winograd schemas. Recent work of ours has shown that this could be achieved via the design of an automated system that is able to output the hardness indexes of Winograd schemas, albeit with limitations regarding the number of schemas it could be applied on. This paper adds to previous research by presenting a new system that is based on machine learning, able to output the hardness of any Winograd schema faster and more accurately than any other previously used method. Our developed system, which works within two different approaches, namely the random forest and deep learning (LSTM-based), is ready to be used as an extension of any other system that aims to differentiate between Winograd schemas, according to their perceived hardness for humans. At the same time, along with our developed system we extend previous work by presenting the results of a large-scale experiment that shows how human performance varies across Winograd schemas.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference68 articles.

1. The Berkeley FrameNet Project;Baker,1998

2. Establishing a human baseline for the Winograd schema challenge;Bender,2015

3. A neural probabilistic language model;Bengio;Journal of Machine Learning Research,2003

4. Abductive commonsense reasoning;Bhagavatula,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3