Fuzzy bi-Gödel modal logic and its paraconsistent relatives

Author:

Bílková Marta1,Frittella Sabine2,Kozhemiachenko Daniil3

Affiliation:

1. The Czech Academy of Sciences , Institute of Computer Science, Czech Republic

2. INSA Centre Val de Loire, Univ. Orléans , LIFO EA 4022, France

3. Univ. Bordeaux, CNRS, Bordeaux INP , LaBRI, UMR 5800

Abstract

Abstract We present an axiomatization of the fuzzy bi-Gödel modal logic ${\textbf{K}\textsf{biG}}^{\textsf{f}}$ formulated in the language containing $\triangle $ (Baaz Delta operator) and treating $-\!-\!< $ (co-implication) as the defined connective. We also consider two paraconsistent relatives of ${\textbf{K}\textsf{biG}}^{\textsf{f}}$ — $\textbf{K}\textsf{G}^{2\pm \textsf{f}}$ and $\textsf{G}^{2\pm \textsf{f}}_{\blacksquare ,\blacklozenge }$. These logics are defined on fuzzy frames with two valuations $e_{1}$ and $e_{2}$ standing for the support of truth and falsity, respectively, and equipped with two fuzzy relations$R^{+}$ and $R^{-}$ used to determine supports of truth and falsity of modal formulas. We construct embeddings of $\textbf{K}\textsf{G}^{2\pm \textsf{f}}$ and $\textsf{G}^{2\pm \textsf{f}}_{\blacksquare ,\blacklozenge }$ into ${\textbf{K}\textsf{biG}}^{\textsf{f}}$ and use them to obtain the characterization of $\textbf{K}\textsf{G}^{2}$- and $\textsf{G}^{2}_{\blacksquare ,\blacklozenge }$-definable frames. Moreover, we study the transfer of ${\textbf{K}\textsf{biG}}^{\textsf{f}}$ formulas into $\textbf{K}\textsf{G}^{2\pm \textsf{f}}$, i.e., formulas that are ${\textbf{K}\textsf{biG}}^{\textsf{f}}$-valid on mono-relational frames $\mathfrak{F}$ and $\mathfrak{F}^{\prime}$ iff they are $\textbf{K}\textsf{G}^{2\pm \textsf{f}}$-valid on their bi-relational counterparts. Finally, we establish $\textsf{PSpace}$-completeness of all considered logics.

Publisher

Oxford University Press (OUP)

Reference38 articles.

1. Time and Gödel: Fuzzy temporal reasoning in PSPACE;Aguilera,2022

2. Uniqueness of logical connectives in a bilateralist setting;Ayhan,2021

3. Infinite-valued Gödel logics with 0-1-projections and relativizations;Baaz,1996

4. A useful four-valued logic;Belnap,1977

5. How a computer should think;Belnap,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3