Finitism, imperative programs and primitive recursion

Author:

Leivant Daniel1

Affiliation:

1. SICE, Indiana University and IRIF, Université Paris-Diderot, France

Abstract

Abstract Following the Crisis of Foundations Hilbert proposed to consider a finitistic form of arithmetic as mathematics’ safe core. This approach to finitism has often admitted primitive recursive function definitions as obviously finitistic, but some have advocated the inclusion of additional variants of recurrence, while others argued that, to the contrary, primitive recursion exceeds finitism. In a landmark essay, William Tait contested the finitistic nature of these extensions, due to their impredicativity, and advocated identifying finitism with primitive recursive arithmetic, a stance often referred to as Tait’s Thesis. However, a problem with Tait’s argument is that the recurrence schema has itself impredicative and non-finitistic facets, starting with an explicit reference to the functions being defined, which are after all infinite objects. It is therefore desirable to buttress Tait’s Thesis on grounds that avoid altogether any trace of concrete infinities or impredicativity. We propose here to do just that, building on the generic framework of [ 13]. We provide further evidence for Tait’s Thesis by outlining a proof of a purely finitistic version of Parsons’ theorem, whose intuitive gist is that finitistic reasoning is equivalent to finitistic computing.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference28 articles.

1. Saturated models of universal theories;Avigad;Annals of Pure and Applied Logic,2002

2. First-order proof theory of arithmetic;Buss,1998

3. Does reductive proof theory have a viable rationale?;Feferman;Erkenntnis,2000

4. A simple proof of Parsons’ theorem;Ferreira;Notre Dame Journal of Formal Logic,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3