Categorical and algebraic aspects of the intuitionistic modal logic IEL― and its predicate extensions

Author:

Rogozin Daniel1

Affiliation:

1. Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, build.1, Moscow 127051 Russia, and Serokell OÜ, Pille tn 7/5-13, Kesklinna linnaosa, Tallinn, Harju maakond, 10135, Estonia

Abstract

Abstract The system of intuitionistic modal logic $\textbf{IEL}^{-}$ was proposed by S. Artemov and T. Protopopescu as the intuitionistic version of belief logic (S. Artemov and T. Protopopescu. Intuitionistic epistemic logic. The Review of Symbolic Logic, 9, 266–298, 2016). We construct the modal lambda calculus, which is Curry–Howard isomorphic to $\textbf{IEL}^{-}$ as the type-theoretical representation of applicative computation widely known in functional programming.We also provide a categorical interpretation of this modal lambda calculus considering coalgebras associated with a monoidal functor on a Cartesian closed category. Finally, we study Heyting algebras and locales with corresponding operators. Such operators are used in point-free topology as well. We study complete Kripke–Joyal-style semantics for predicate extensions of $\textbf{IEL}^{-}$ and related logics using Dedekind–MacNeille completions and modal cover systems introduced by Goldblatt (R. Goldblatt. Cover semantics for quantified lax logic. Journal of Logic and Computation, 21, 1035–1063, 2011). The paper extends the conference paper published in the LFCS’20 volume (D. Rogozin. Modal type theory based on the intuitionistic modal logic IEL. In International Symposium on Logical Foundations of Computer Science, pp. 236–248. Springer, 2020).

Funder

Russian Foundation for Basic Research

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference65 articles.

1. Introduction to categories and categorical logic;Abramsky,2010

2. Embedding of the modal $\lambda $-calculus into the logic of proofs;Artemov;Trudy Matematicheskogo Instituta imeni VA Steklova,2003

3. Intuitionistic epistemic logic;Artemov;The Review of Symbolic Logic,2016

4. Cover schemes, frame-valued sets and their potential uses in spacetime physics;Bell;Technical Report,2003

5. Extended Curry–Howard correspondence for a basic constructive modal logic;Bellin;Proceedings of Methods for Modalities,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3