Towards automated reasoning in Herbrand structures

Author:

Cohen Liron1,Rowe Reuben N S2,Zohar Yoni3

Affiliation:

1. Department of Computer Science, Cornell University , Ithaca NY

2. School of Computing, University of Kent, Canterbury , UK, NF

3. Computer Science Department, Stanford University , Stanford CA

Abstract

Abstract Herbrand structures have the advantage, computationally speaking, of being guided by the definability of all elements in them. A salient feature of the logics induced by them is that they internally exhibit the induction scheme, thus providing a congenial, computationally oriented framework for formal inductive reasoning. Nonetheless, their enhanced expressivity renders any effective proof system for them incomplete. Furthermore, the fact that they are not compact poses yet another proof-theoretic challenge. This paper offers several layers for coping with the inherent incompleteness and non-compactness of these logics. First, two types of infinitary proof system are introduced—one of infinite width and one of infinite height—which manipulate infinite sequents and are sound and complete for the intended semantics. The restriction of these systems to finite sequents induces a completeness result for finite entailments. Then, in search of effectiveness, two finite approximations of these systems are presented and explored. Interestingly, the approximation of the infinite-width system via an explicit induction scheme turns out to be weaker than the effective cyclic fragment of the infinite-height system.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference40 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3