An algebraic analysis of implication in non-distributive logics

Author:

Chajda Ivan1,Emir Kadir2,Fazio Davide1,LÄnger Helmut3,Ledda Antonio4,Paseka Jan2

Affiliation:

1. A.Lo.P.Hi.S Research Group , University of Cagliari, Via Is Mirrionis, 1, 09123, Cagliari, Italy

2. Faculty of Science , Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

3. Faculty of Mathematics and Geoinformation , Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria, and Faculty of Science, Department of Algebra and Geometry, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic

4. A.Lo.P.Hi.S Research Group , University of Cagliari Via Is Mirrionis, 1 09123 Cagliari, Italy

Abstract

Abstract In this paper, we introduce the concept of a (lattice) skew Hilbert algebra as a natural generalization of Hilbert algebras. This notion allows a unified treatment of several structures of prominent importance for mathematical logic, e.g. (generalized) orthomodular lattices, and MV-algebras, which admit a natural notion of implication. In fact, it turns out that skew Hilbert algebras play a similar role for (strongly) sectionally pseudocomplemented posets as Hilbert algebras do for relatively pseudocomplemented ones. We will discuss basic properties of closed, dense and weakly dense elements of skew Hilbert algebras and their applications, and we will provide some basic results on their structure theory.

Funder

Austrian Science Fund

Czech Science Foundation

ÖAD

IGA

Regione Autonoma della Sardegna

MIUR

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference33 articles.

1. Orthomodular Lattices;Beran,1985

2. On the maximal deductive systems of a bounded Hilbert algebra;Buşneag;Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie. Nouvelle Série,1987

3. Hilbert algebras of fractions and maximal Hilbert algebras of quotients;Buşneag;Kobe Journal of Mathematics,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3