A new perspective on completeness and finitist consistency

Author:

Santos Paulo Guilherme1,Sieg Wilfried2,Kahle Reinhard3

Affiliation:

1. NovaMath , NOVA School of Science and Technology, P-2829-516 Caparica, Portugal

2. Department of Philosophy , Carnegie Mellon University, Pittsburgh, PA 15213, USA

3. Theorie und Geschichte der Wissenschaften , Universität Tübingen, Doblerstr. 33, D-72074 Tübingen, Germany

Abstract

Abstract In this paper, we study the metamathematics of consistent arithmetical theories $T$ (containing $\textsf {I}\varSigma _{1}$); we investigate numerical properties based on proof predicates that depend on numerations of the axioms. Numeral Completeness. For every true (in $\mathbb {N}$) sentence $\vec {Q}\vec {x}.\varphi (\vec {x})$, with $\varphi (\vec {x})$ a $\varSigma _{1}(\textsf {I}\varSigma _1)$-formula, there is a numeration $\tau $ of the axioms of $T$ such that $\textsf {I}\varSigma _1\vdash \vec {Q}\vec {x}. \texttt {Pr}_{\tau }(\ulcorner \varphi (\overset {\text{.} }{\vec {x}})\urcorner )$, where $\texttt {Pr}_{\tau }$ is the provability predicate for the numeration $\tau $. Numeral Consistency. If $T$ is consistent, there is a $\varSigma _{1}(\textsf {I}\varSigma _1)$-numeration $\tau $ of the axioms of $\textsf {I}\varSigma _{1}$ such that $\textsf {I}\varSigma _1\vdash \forall\, x. \texttt {Pr}_{\tau }(\ulcorner \neg \textit {Prf}(\ulcorner \perp \urcorner , \overset {\text{.}}{x})\urcorner )$, where $\textit {Prf}(x,y)$ denotes a $\varDelta _{1}(\textsf {I}\varSigma _1)$-definition of ‘$y$ is a $T$-proof of $x$’. Finitist consistency is addressed by generalizing a result of Artemov: Partial finitism. If $T$ is consistent, there is a primitive recursive function $f$ such that, for all $n\in \mathbb {N}$, $f(n)$ is the code of an $\textsf {I}\varSigma _{1}$-proof of $\neg\, \textit{Prf}(\ulcorner \perp \urcorner ,\overline {n})$. These results are not in conflict with Gödel’s Incompleteness Theorems. Rather, they allow to extend their usual interpretation and show a deep connection to reflections in Hilbert’s last papers of 1931.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference42 articles.

1. The provability of consistency;Artemov,2020

2. Reflection principles and provability algebras in formal arithmetic;Beklemishev;Russian Mathematical Surveys,2005

3. Finding the limit of incompleteness I;Cheng;Bulletin of Symbolic Logic,2020

4. David Hilbert's Lectures on the Foundations of Arithmetic and Logic 1917-1933

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3