Defining Logical Systems via Algebraic Constraints on Proofs

Author:

Gheorghiu Alexander V1,Pym David J12

Affiliation:

1. University College London , London WC1E 6BT, UK

2. Institute of Philosophy, University of London , London WC1H 0AR, UK

Abstract

Abstract We present a comprehensive programme analysing the decomposition of proof systems for non-classical logics into proof systems for other logics, especially classical logic, using an algebra of constraints. That is, one recovers a proof system for a target logic by enriching a proof system for another, typically simpler, logic with an algebra of constraints that act as correctness conditions on the latter to capture the former; e.g. one may use Boolean algebra to give constraints in a sequent calculus for classical propositional logic to produce a sequent calculus for intuitionistic propositional logic. The idea behind such forms of decomposition is to obtain a tool for uniform and modular treatment of proof theory and to provide a bridge between semantics logics and their proof theory. The paper discusses the theoretical background of the project and provides several illustrations of its work in the field of intuitionistic and modal logics: including, a uniform treatment of modular and cut-free proof systems for a large class of propositional logics; a general criterion for a novel approach to soundness and completeness of a logic with respect to a model-theoretic semantics; and a case study deriving a model-theoretic semantics from a proof-theoretic specification of a logic.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference71 articles.

1. Natural deduction for non-classical logics;Basin;Studia Logica,1998

2. Semantic construction of intuitionistic logic;Beth;Indagationes Mathematicae,1955

3. Internalizing labelled deduction;Blackburn;Journal of Logic and Computation,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3