Resource sharing linear logic

Author:

Kurokawa Hidenori1,Kushida Hirohiko2

Affiliation:

1. Institute of Liberal Arts and Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

2. Computer Science Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

Abstract

Abstract In this paper, we introduce a new logic that we call ‘resource sharing linear logic (RSLL)’. In linear logic (LL), formulas without modality express some resource-conscious situation (a formula can be used only once); formulas with modality express a situation with unlimited resources. We introduce the logic RSLL in which we have a strengthened modality (S5-modality) that can be understood as expressing not only unlimited resources but also resources shared by different agents. Observing that merely strengthening the modality allows weakening axiom to be derivable in a Hilbert-style formulation of this logic, we reformulate RSLL as a logic similar to affine logic by a hypersequent calculus that has weakening as a primitive rule. We prove the completeness of the hypersequent calculus with respect to phase semantics and the cut-elimination theorem for the system by a syntactical method. We also prove the decidability of RSLL via a computational interpretation of RSLL, which is a parallel version of Kopylov’s computational model for LL. We then introduce an explicit counterpart of RSLL in the style of Artemov’s justication logic (JRSLL). We prove a realization theorem for RSLL via its explicit counterpart.

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Reference27 articles.

1. Justification logic;Artemov,2012

2. Cambridge Tracts in Mathematics;Artemov,2019

3. Explicit provability and constructive semantics;Artemov;The Bulletin of Symbolic Logic,2001

4. The semantics and proof theory of linear logic;Avron;Theoretical Computer Science,1988

5. Hypersequents, logical consequence, and intermediate logics for concurrency;Avron;Annals of Mathematics and Artificial Intelligence,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3