Estimating intra-cluster correlation coefficients for planning longitudinal cluster randomized trials: a tutorial

Author:

Ouyang Yongdong12ORCID,Hemming Karla3ORCID,Li Fan45ORCID,Taljaard Monica12

Affiliation:

1. Clinical Epidemiology Program, Ottawa Hospital Research Institute , Ottawa, ON, Canada

2. School of Epidemiology and Public Health, University of Ottawa , Ottawa, ON, Canada

3. Institute of Applied Health Research, The University of Birmingham , Birmingham, UK

4. Department of Biostatistics, Yale School of Public Health , New Haven, CT, USA

5. Center for Methods in Implementation and Prevention Science, Yale School of Public Health , New Haven, CT, USA

Abstract

Abstract It is well-known that designing a cluster randomized trial (CRT) requires an advance estimate of the intra-cluster correlation coefficient (ICC). In the case of longitudinal CRTs, where outcomes are assessed repeatedly in each cluster over time, estimates for more complex correlation structures are required. Three common types of correlation structures for longitudinal CRTs are exchangeable, nested/block exchangeable and exponential decay correlations—the latter two allow the strength of the correlation to weaken over time. Determining sample sizes under these latter two structures requires advance specification of the within-period ICC and cluster autocorrelation coefficient as well as the intra-individual autocorrelation coefficient in the case of a cohort design. How to estimate these coefficients is a common challenge for investigators. When appropriate estimates from previously published longitudinal CRTs are not available, one possibility is to re-analyse data from an available trial dataset or to access observational data to estimate these parameters in advance of a trial. In this tutorial, we demonstrate how to estimate correlation parameters under these correlation structures for continuous and binary outcomes. We first introduce the correlation structures and their underlying model assumptions under a mixed-effects regression framework. With practical advice for implementation, we then demonstrate how the correlation parameters can be estimated using examples and we provide programming code in R, SAS, and Stata. An Rshiny app is available that allows investigators to upload an existing dataset and obtain the estimated correlation parameters. We conclude by identifying some gaps in the literature.

Funder

National Institute of Aging

National Institutes of Health

NIA

Imbedded Pragmatic Alzheimer's Disease

AD-Related Dementias Clinical Trials Collaboratory

Canadian Institutes of Health Research

NIHR

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3