Investigation of the structure and magnitude of time-varying uncontrolled confounding in simulated cohort data analyzed using g-computation

Author:

Soohoo Melissa1,Arah Onyebuchi A123ORCID

Affiliation:

1. Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA) , Los Angeles, CA, USA

2. Department of Statistics and Data Science, UCLA College , Los Angeles, CA, USA

3. Research Unit for Epidemiology, Department of Public Health, Aarhus University , Aarhus, Denmark

Abstract

Abstract Background When estimating the effect of time-varying exposures on longer-term outcomes, the assumption of conditional exchangeability or no uncontrolled confounding extends beyond baseline confounding to include time-varying confounding. We illustrate the structures and magnitude of uncontrolled time-varying confounding in exposure effect estimates obtained from g-computation when sequential conditional exchangeability is violated. Methods We used directed acyclic graphs (DAGs) to depict time-varying uncontrolled confounding. We performed simulations and used g-computation to quantify the effects of each time-varying exposure for each DAG type. Models adjusting all time-varying confounders were considered the true (bias-adjusted) estimate. The exclusion of time-varying uncontrolled confounders represented the biased effect estimate and an unmet ‘no uncontrolled confounding’ assumption. True and biased estimates were compared across DAGs, with different magnitudes of uncontrolled confounding. Results Time-varying uncontrolled confounding can present in several scenarios, including relationships into subsequently measured exposure(s), outcome, unmeasured confounder(s) and other measured confounder(s). In simulations, effect estimates obtained from g-computation were more biased in DAGs when the uncontrolled confounders were directly related to the outcome. Complex DAGs that included relationships between uncontrolled confounders and other variables and relationships where exposures caused uncontrolled confounders at the next time point resulted in the most biased effect estimates. In these complex DAGs, excluding uncontrolled confounders affected the multiple effect estimates. Conclusions Time-varying uncontrolled confounding has the potential to substantially impact observed effect estimates. Given the importance of longitudinal studies in advising public health, the impact of time-varying uncontrolled confounding warrants more recognition and evaluation using quantitative bias analysis.

Funder

UCLA Graduate Research Mentorship

T32 Training Grant in Cancer Epidemiology

NIH

National Center for Advancing Translational Science

California Center for Population Research

Kennedy Shriver National Institute of Child Health and Human Development

National Institutes of Health

David Geffen School of Medicine—Broad Stem Cell Research Center’s COVID-9 Research

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3