Immune rebalancing at the maternal-fetal interface of maternal SARS-CoV-2 infection during early pregnancy

Author:

Xi Chenxiang1ORCID,Yan Zihui1ORCID,Bai Dandan12ORCID,Zhang Yalin1ORCID,Wang Beiying1,Han Xiaoxiao1,Wu Li1,Shi Xiaohui1,Hu Zhiyi1,Tang Ming1,Su Zhongqu1,Liu Yingdong1,Liu Binya1,Yin Jiqing1,Wang Hong1,Li Xiaocui1,Zhang Yanping1,Gao Shaorong1ORCID,Liu Wenqiang1ORCID

Affiliation:

1. Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University , Shanghai 200092 , China

2. Jiaxing Maternity and Child Health Care Hospital , Jiaxing 314050 , China

Abstract

Abstract The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) remains a threat to pregnant women. However, the impact of early pregnancy SARS-CoV-2 infection on the maternal-fetal interface remains poorly understood. Here, we present a comprehensive analysis of single-cell transcriptomics and metabolomics in placental samples infected with SARS-CoV-2 during early pregnancy. Compared to control placentas, SARS-CoV-2 infection elicited immune responses at the maternal-fetal interface and induced metabolic alterations in amino acid and phospholipid profiles during the initial weeks post-infection. However, subsequent immune cell activation and heightened immune tolerance in trophoblast cells established a novel dynamic equilibrium that mitigated the impact on the maternal-fetal interface. Notably, the immune response and metabolic alterations at the maternal-fetal interface exhibited a gradual decline during the second trimester. Our study underscores the adaptive immune tolerance mechanisms and establishment of immunological balance during the first two trimesters following maternal SARS-CoV-2 infection.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

Science and Technology of Shanghai Municipality

Shanghai Municipal Medical and Health Discipline Construction Projects

China Postdoctoral Science Foundation

Shanghai Municipal Health

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3