Neuronal guidance genes in health and diseases

Author:

Yuasa-Kawada Junichi1,Kinoshita-Kawada Mariko1,Tsuboi Yoshio1,Wu Jane Y2

Affiliation:

1. Department of Neurology, Fukuoka University , Fukuoka, Japan

2. Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center , Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Abstract

Abstract Neurons migrate from their birthplaces to the destinations, and extending axons navigate to their synaptic targets by sensing various extracellular cues in spatiotemporally controlled manners. These evolutionally conserved guidance cues and their receptors regulate multiple aspects of neural development to establish the highly complex nervous system by mediating both short- and long-range cell-cell communications. Neuronal guidance genes (encoding cues, receptors or downstream signal transducers) are critical not only for development of the nervous system, but also for synaptic maintenance, remodeling and function in the adult brain. One emerging theme is the combinatorial and complementary functions of relatively limited classes of neuronal guidance genes in multiple processes, including neuronal migration, axonal guidance, synaptogenesis and circuit formation. Importantly, neuronal guidance genes also regulate cell migration and cell-cell communications outside the nervous system. We are just beginning to understand how cells integrate multiple guidance and adhesion signaling inputs to determine overall cellular/subcellular behavior and how aberrant guidance signaling in various cell types contributes to diverse human diseases, ranging from developmental, neuropsychiatric and neurodegenerative disorders to cancer metastasis. We review classic studies and recent advances in understanding signaling mechanisms of the guidance genes as well as their roles in human diseases. Furthermore, we discuss the remaining challenges and therapeutic potentials of modulating neuronal guidance pathways in neural repair.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Drug Discovery,Biochemistry,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3