Affiliation:
1. Paul G. Allen School of Computer Science and Engineering, University of Washington , Seattle , WA 98103 , USA
Abstract
Abstract
Although knowledge of biological pathways is essential for interpreting results from computational biology studies, the growing number of pathway databases complicates efforts to efficiently perform pathway analysis due to high redundancies among pathways from different databases, and inconsistencies in how pathways are created and named. We introduce the PAthway Communities (PAC) framework, which reconciles pathways from different databases and reduces pathway redundancy by revealing informative groups with distinct biological functions. Uniquely applying the Louvain community detection algorithm to a network of 4847 pathways from KEGG, REACTOME and Gene Ontology databases, we identify 35 distinct and automatically annotated communities of pathways and show that they are consistent with expert-curated pathway categories. Further, we demonstrate that our pathway community network can be queried with new gene sets to provide biological context in terms of related pathways and communities. Our approach, combined with an interpretable web tool we provide, will help computational biologists more efficiently contextualize and interpret their biological findings.
Funder
National Science Foundation
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献