TopoFun: a machine learning method to improve the functional similarity of gene co-expression modules

Author:

Janbain Ali12,Reynès Christelle1ORCID,Assaghir Zainab2,Zeineddine Hassan2,Sabatier Robert1,Journot Laurent13ORCID

Affiliation:

1. IGF, Univ Montpellier, CNRS, INSERM, Montpellier 34094, France

2. Applied Mathematics Department, Lebanese University, Beirut 1003, Lebanon

3. MGX, Univ Montpellier, CNRS, INSERM, Montpellier 34094, France

Abstract

Abstract A comprehensive, accurate functional annotation of genes is key to systems-level approaches. As functionally related genes tend to be co-expressed, one possible approach to identify functional modules or supplement existing gene annotations is to analyse gene co-expression. We describe TopoFun, a machine learning method that combines topological and functional information to improve the functional similarity of gene co-expression modules. Using LASSO, we selected topological descriptors that discriminated modules made of functionally related genes and random modules. Using the selected topological descriptors, we performed linear discriminant analysis to construct a topological score that predicted the type of a module, random-like or functional-like. We combined the topological score with a functional similarity score in a fitness function that we used in a genetic algorithm to explore the co-expression network. To illustrate the use of TopoFun, we started from a subset of the Gene Ontology Biological Processes (GO-BPs) and showed that TopoFun efficiently retrieved genes that we omitted, and aggregated a number of novel genes to the initial GO-BP while improving module topology and functional similarity. Using an independent protein-protein interaction database, we confirmed that the novel genes gathered by TopoFun were functionally related to the original gene set.

Funder

Centre National de la Recherche Scientifique

Institut National de la Santé et de la Recherche Médicale

Université de Montpellier

Université Libanaise

France Génomique National Infrastructure

Agence Nationale pour la Recherche

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Reference56 articles.

1. Large-scale investigation of the reasons why potentially important genes are ignored;Stoeger;PLoS Biol.,2018

2. Expansion of the gene ontology knowledgebase and resources;The Gene Ontology Consortium;Nucleic Acids Res.,2017

3. KEGG for integration and interpretation of large-scale molecular data sets;Kanehisa;Nucleic Acids Res.,2012

4. The reactome pathway knowledgebase;Jassal;Nucleic Acids Res.,2020

5. A gene-coexpression network for global discovery of conserved genetic modules;Stuart;Science,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3