Celda: a Bayesian model to perform co-clustering of genes into modules and cells into subpopulations using single-cell RNA-seq data

Author:

Wang Zhe12ORCID,Yang Shiyi2,Koga Yusuke12,Corbett Sean E12,Shea Conor V12,Johnson W Evan12,Yajima Masanao3,Campbell Joshua D12

Affiliation:

1. Bioinformatics Program, Boston University , Boston ,  MA ,  USA

2. Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine , Boston , MA , USA

3. Department of Mathematics and Statistics, Boston University , Boston , MA , USA

Abstract

AbstractSingle-cell RNA-seq (scRNA-seq) has emerged as a powerful technique to quantify gene expression in individual cells and to elucidate the molecular and cellular building blocks of complex tissues. We developed a novel Bayesian hierarchical model called Cellular Latent Dirichlet Allocation (Celda) to perform co-clustering of genes into transcriptional modules and cells into subpopulations. Celda can quantify the probabilistic contribution of each gene to each module, each module to each cell population and each cell population to each sample. In a peripheral blood mononuclear cell dataset, Celda identified a subpopulation of proliferating T cells and a plasma cell which were missed by two other common single-cell workflows. Celda also identified transcriptional modules that could be used to characterize unique and shared biological programs across cell types. Finally, Celda outperformed other approaches for clustering genes into modules on simulated data. Celda presents a novel method for characterizing transcriptional programs and cellular heterogeneity in scRNA-seq data.

Funder

National Library of Medicine

Informatics Technology for Cancer Research

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Reference65 articles.

1. KEGG for linking genomes to life and the environment;Kanehisa;Nucleic Acids Res.,2008

2. Single-cell RNA sequencing to explore immune cell heterogeneity;Papalexi;Nat. Rev. Immunol.,2018

3. Single-cell RNA sequencing for the study of development, physiology and disease;Potter;Nat. Rev. Nephrol.,2018

4. Probabilistic topic models;Blei;Commun. ACM,2012

5. Latent dirichlet allocation;Blei;J. Mach. Learn. Res.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3